by Abdul Malik*^a), Nighat Afza^b), Shazia Yasmeen^b), Mohammad Aijaz Anwer^b), Muhammad Irfan Ali^b), and Rasool Bakhsh Tareen^c)

^a) International Center for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi-75270, Pakistan

(phone: +92-21-34824926; fax: +92-21-34819018: e-mail: abdul.malik@iccs.edu)

^b) Pharmaceutical Research Centre, PCSIR Laboratories Complex Karachi, Karachi-75280, Pakistan ^c) Department of Botany, Balochistan University, Sariab Road, Quetta, Pakistan

Hertidins A-E (1-5, resp.), new eremophilenolide-type sesquiterpenes, have been isolated from the AcOEt-soluble fraction of *Hertia intermedia*. Structures of 1-5 were elucidated on the basis of extensive spectroscopic studies.

Introduction. - The genus Hertia belongs to the family Compositae and comprises twelve species distributed all over South and North Africa, and Southwest Asia [1]. The crude CHCl₃-, AcOEt-, and MeOH-soluble extracts of Hertia cheirifolia have been reported to exhibit spasmolytic and anti-inflammatory activities. The antispasmodic effect of the sesquiterpenoid bakkenolide isolated from the CHCl₃-soluble extract was found in the same range as that of alverine, a standard musculotropic spasmolytic agent [2]. One of the species of the genus *Hertia* is *H. intermedia* BOISS, growing wildly in hilly regions of Balochistan and North West Frontier Provinces of Pakistan, and is also distributed westward towards Iran [3]. It is a small shrub with beautiful yellow flowers [4]. It is used as painkiller in the hilly areas of Pakistan [5]. A literature survey revealed that no biological studies have so far been carried out on this plant, while the phytochemical studies are confined to only two sesquiterpenes [6]. The ethnopharmacological and chemotaxonomic importance of the genus Hertia prompted us to carry out further phytochemical studies on *H. intermedia*, resulting in the isolation of five eremophilenolide-type sesquiterpenes, named hertidins A - E(1-5, resp.; Fig. 1), from the AcOEt-soluble fraction. Their structures have been elucidated through extensive spectroscopic analyses.

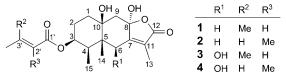


Fig. 1. Structures of hertidins A - D (1-4, resp.)

Results and Discussion. – Hertidin A (1) was obtained as a white powder. Its molecular formula was deduced as $C_{20}H_{28}O_6$ from HR-EI-MS, which showed an M^+

^{© 2011} Verlag Helvetica Chimica Acta AG, Zürich

peak at m/z 364.1882 (calc. 364.1886), representing seven degrees of unsaturation. The EI-MS showed, besides the M^+ peak at m/z 364, two prominent fragment peaks at m/z 346 and 328 due to successive losses of H₂O molecules, indicating the presence of two OH groups. The IR spectrum displayed absorption bands diagnostic of OH (3468 cm⁻¹), α , β -unsaturated lactone (1750 cm⁻¹), α , β -unsaturated ester (1696 cm⁻¹) and C=C bond (1620 cm⁻¹) functionalities. The ¹³C-NMR (BB and DEPT) spectra exhibited 20 signals, ascribed to five Me, four CH₂, and three CH groups, and eight quaternary C-atoms. The CO C-atoms of the α , β -unsaturated lactone and α , β -unsaturated ester resonated downfield at δ (C) 173.1 and 165.9, while the corresponding olefinic C-atom signals were observed at δ (C) 158.2, 157.6, 122.8, and 115.9, respectively. Two O-bearing quaternary C-atoms gave rise to signals at δ (C) 102.5 and 74.1, while the O-bearing CH C-atom resonated at δ (C) 71.9. The Me signals were observed at δ (C) 27.4, 20.8, 17.9, 12.2, and 8.3.

The ¹H-NMR spectrum showed a *singlet* due to an olefinic H-atom of a trisubstituted C=C bond at $\delta(H)$ 5.63 and a *multiplet* of an O-bearing CH group at $\delta(H)$ 4.98. The broad peaks at $\delta(H)$ 5.01 and 3.37, which disappeared on shaking with D₂O, were assigned to the OH groups. Characteristic Me signals of an eremophilenolide-type sesquiterpene were observed at $\delta(H)$ 1.80 (*s*, 3 H), 1.20 (*d*, *J* = 7.0, 3 H), and 0.91 (*s*, 3 H) [7–9]. The Me groups attached to the olefinic C-atom resonated comparatively downfield at $\delta(H)$ 2.15 and 1.90 (2*s*, 3 H). The Me H-atom signals at $\delta(H)$ 1.80 showed interactions in the HMBC with signals of C(11) ($\delta(C)$ 122.8), C(7) ($\delta(C)$ 158.2), and C(12) ($\delta(C)$ 173.1), suggesting a Me-substituted α,β -unsaturated lactone. Another Me signal appearing at $\delta(H)$ 0.91 correlated with those of C(4) ($\delta(C)$ 36.4), C(6) ($\delta(C)$ 31.1), C(5) ($\delta(C)$ 46.0), and C(10) ($\delta(C)$ 74.1), allowing us to assign it to C(14). The remaining Me signal at $\delta(H)$ 1.20 correlated with signals of C(4) ($\delta(C)$ 36.4), C(3) ($\delta(C)$ 71.9), and C(5) ($\delta(C)$ 46.0) and could subsequently be assigned to C(15).

The ¹³C-NMR data showed close similarities to those of herticin A [6], except for the downfield shifts of both C(3) and C(8). The presence of a OH group at C(8) could be inferred from the downfield shift of C(8) signal (δ (C) 102.5) and a well-defined AX pattern for the CH₂ H-atoms of C(9) appearing as *doublets* at δ (H) 2.22 and 2.18 (J = 11.1, 1 H). It was subsequently confirmed by HMBCs between the OH H-atom at $\delta(H)$ 5.01 and C(8) (δ (C) 102.5), C(7) (δ (C) 158.2), and C(9) (δ (C) 42.5). The presence of a 3-methylbut-2-enoyloxy moiety was evident from the EI-MS showing an intense peak at m/z 83 as well as other spectral data, and its location at C(3) could be confirmed by ³J correlation of H–C(3) at δ (H) 4.98 with C(1') (δ (C) 165.9). Its β -orientation was deduced by comparing chemical shifts, coupling pattern, and coupling constants with those of related compounds [10] and further confirmed by a NOESY correlation of $H_a - C(3)$ with $H_a - C(4)$, and $H_a - C(6)$. The presence of a NOESY correlation between HO–C(10) (δ (H) 3.37) and Me(14) (δ (H) 0.91) confirmed the *cis*-fused A/B ring system. Another NOESY interaction between Me(14) (δ (H) 0.91) and Me(15) (δ (H) 1.20) allowed us to assign β -orientation to the Me group at C(4). The absence of a NOESY correlation between HO-C(8), and HO-C(10) and Me(14) provided evidence for their relative trans-orientation. The other NOESY correlations (Fig. 2) and HMQC were in complete agreement to the assigned structure of hertidin A (1) as 8α ,10 β -dihydroxy-3-[(3-methylbut-2-enoyl)oxy]eremophilenolide.

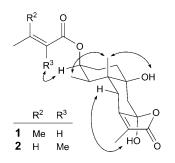


Fig. 2. Key NOESY interactions in compounds 1 and 2

Hertidin B (2) was obtained as a white powder. The molecular formula was established as $C_{20}H_{28}O_6$ on the basis of the HR-EI-MS (M^+ peak at m/z 364.1884; calc. 364.1886). The EI-mass and IR spectra were similar to those of 1. The ¹³C-NMR spectrum (BB and DEPT) was also similar to that of **1** showing 20 signals for five Me, four CH_2 , and three CH groups, and eight quaternary C-atoms. It was apparent that **2** is an isomer of **1**. The signals of rings A/B and Me-substituted α,β -unsaturated lactone were closely similar to those of 1, showing a difference in the $\alpha\beta$ -unsaturated ester moiety, *i.e.*, in the chemical shifts of the corresponding Me groups. The ¹H-NMR chemical shift of the H-atom of the trisubstituted C=C bond was shifted downfield to $\delta(H)$ 6.04 (q, J = 7.0, 1.2). The signal of one of the Me groups also shifted upfield to δ (H) 1.88, showing a *trans*-allylic coupling with the olefinic H-atoms (d, J = 1.2). The signal of the remaining Me group was observed at $\delta(H)$ 1.90 (d, J=7.0, 3 H). These data confirmed the presence of a 2-methylbut-2-enoyloxy moiety. The (E)-configuration of the C=C bond was inferred through *trans* allylic coupling of olefinic H-atom with Me H-atoms at C(2'), as well as by NOESY correlations between Me H-atoms at C(2'), and C(4) and H_{a} –C(3) (Fig. 2). The HMBC and other NOESY correlations of 2 were similar to those of 1. Therefore, the structure of hertidin B (2) could be assigned as 8α ,10 β -dihydroxy-3-[(E)-2-methylbut-2-enoyl)oxy]eremophilenolide.

Hertidin C (**3**) was obtained as white powder. The HR-EI-MS exhibited an M^+ peak at m/z 380.1830 consistent with a molecular formula $C_{20}H_{28}O_7$ (calc. 380.1835). The IR spectrum was similar to that of **1**. The ¹³C-NMR spectrum (BB and DEPT) showed 20 signals comprising five Me, three CH₂, and four CH groups, and eight quaternary C-atoms. It was similar to **1** except the downfield shift of C(6) (δ (C) 72.0). The ¹H-NMR spectrum also showed the additional downfield O-bearing CH H-atom at δ (H) 4.70 (*s*, 1 H). It could be assigned to C(6) based on its HMBCs with C(5) (δ (C) 46.1), C(7) (δ (C) 158.2), C(11) (δ (C) 122.6), C(8) (δ (C) 102.7), C(4) (δ (C) 36.3), and C(10) (δ (C) 74.0). The compound **3** is, therefore, the 6-hydroxy derivative of **1**. The OH group at C(6) was assigned β -orientation based on a strong NOESY interaction between H_a-C(6) and HO-C(8). Hertidin C (**3**) could, therefore, be assigned the structure 6 β ,8 α ,10 β -trihydroxy-3-[(3-methylbut-2-enoyl)oxy]eremophilenolide (*Fig. 1*).

Hertidin D (4) was obtained as a white powder. The molecular formula was established as $C_{20}H_{28}O_7$ by HR-EI-MS (M^+ at m/z 380.1831; calc. 380.1835). The IR spectrum was similar to that of **1**. The ¹³C-NMR spectrum was very similar to that of **2** except for the downfield shift of the C(6) signal (δ (C) 72.0). Similarly, the ¹H-NMR

spectrum showed the downfield signal of the O-bearing CH H-atom at δ (H) 4.60 (*s*, 1 H), which could be assigned to C(6) based on its HMBCs with C(5) (δ (C) 45.8), C(7) (δ (C) 158.3), C(11) (δ (C) 122.7), C(8) (δ (C) 102.6), C(4) (δ (C) 36.4), and C(10) (δ (C) 74.2). It could be assigned α -orientation based on strong NOESY correlation with HO–C(8). The structure of hertidin D (**4**) was, therefore, deduced as $6\beta_8\alpha_10\beta_1$ -trihydroxy-3-[(*E*)-2-methylbut-2-enoyl)oxy]eremophilenolide (*Fig. 1*).

Hertidin E (5; Fig. 3) was isolated as a white powder. The HR-EI-MS showed an M^+ peak at m/z 710.3165 consistent with molecular formula C₄₀H₅₄O₁₁ (calc. 710.3169). The molecular formula was confirmed by ¹³C-NMR (BB and DEPT) spectrum showing 40 signals for ten Me, six CH₂, and eight CH groups, and 14 quaternary C-atoms. The spectra showed it to be a dimeric analogue of compounds 3 and 4 with a notable difference of the missing OH groups at C(8) and C(8'), of which the signals occurred together upfield at ($\delta(C)$ 75.9. In ¹H-NMR spectrum, the signals of H–C(8) and H–C(8') were also observed together comparatively upfield at $\delta(H)$ 5.32 (ddg, J= 10.64, 4.8, 1.4, 2 H). The latter homoallylic coupling of smaller magnitude is due to coupling of the H-atoms at C(13) with H-C(8) and H-C(8'), characteristic for such compounds [1][6]. The signals of the geminal H-atoms at C(9) were now observed as double *doublets* at $\delta(H)$ 2.34 (J = 13.0, 4.8, 2 H) and 1.81 (J = 13.0, 10.6, 2 H). Both H–C(8) and H–C(8') showed a strong NOESY correlation with H_{α} –C(6) allowing us to assign α -orientation. Moreover, the ¹H-NMR spectrum showed the broad signals for two OH groups, *i.e.*, at C(6') at δ (H) 4.60 and at C(10) at δ (H) 3.38, and a slight upfield shift of the H_a -C(6) signal, indicating that the OH groups at C(6) and C(10') are involved in C-O-C bond-formation leading to a dimeric analogue. This could further be confirmed by HMBC of H–C(6) with C(10') (δ (C) 77.1). Therefore, the structure of hertidin E(5) could be assigned as illustrated in Fig. 3.

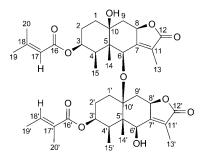


Fig. 3. Structure of hertidin E(5)

Experimental Part

General. Column chromatograpy (CC): silica gel (SiO₂; 230–400 mesh; *E. Merck*). TLC: Precoated silica gel F_{254} plates; detection at 254 nm and by spraying with ceric sulfate reagent. M.p.: *Gallenkamp* apparatus; uncorrected. Optical rotations: *Jasco-DIP-360* digital polarimeter. IR Spectra: *Jasco-302-A* spectrophotometer; in cm⁻¹. ¹H- and ¹³C-NMR spectra: *Bruker AMX 400* spectrometers at 400 and 100 MHz, resp.; δ in ppm, *J* in Hz; 2D-NMR Spectra: *Bruker AMX-500* spectrometer. EI-MS and HR-EI-MS: *Jeol JMS-DA-500* mass spectrometer; in m/z (rel.%).

Plant Material. The plant material of *H. intermedia* BOISS. was collected from Balochistan (Pakistan) in May 2006 and was identified by *R. B. T.*, Plant Taxonomist, Department of Botany, University of Balochistan, where a voucher specimen (No. HI-36-06) has been deposited.

Extraction and Isolation. The shade-dried whole plant (28.0 kg) was exhaustively extracted with MeOH $(3 \times 50 \text{ l})$ at r.t. The extract was evaporated to yield a residue (750 g), which was divided into hexane- (135 g), AcOEt- (150 g), BuOH- (68 g), and H₂O-soluble (38 g) fractions. The AcOEt-soluble fraction was subjected to CC $(SiO_2;$ hexane, hexane/AcOEt, AcOEt, and AcOEt/MeOH). The fraction eluted with hexane/AcOEt 8.5: 2.5 were combined and resubjected to CC $(SiO_2;$ hexane/AcOEt 8.5: 2.5) to afford fractions *FC-1*, *FC-2*, and *FC-3*. *FC-1* was purified by prep. TLC $(SiO_2;$ hexane/AcOEt 8.0: 2.0) to afford **1** (4 mg) and **2** (4.3 mg). *FC-2* was also purified by prep. TLC $(SiO_2;$ hexane/AcOEt 8.5: 1.5) to afford **3** (3.8 mg) and **4** (4.2 mg). *FC-3* was subjected to CC $(SiO_2;$ hexane/AcOEt 8.5: 1.5) to afford **5** (4.5 mg).

Hertidin A (=(4aR,5R,6S,8aS,9aR)-2,4,4a,5,6,7,8,8a,9,9a-Decahydro-8a,9a-dihydroxy-3,4a,5-trimethyl-2-oxonaphtho[2,3-b]furan-6-yl 3-Methylbut-2-enoate; **1**). White solid. M.p. 150–151°. [a]₂⁶ = -118 (c = 0.015, CHCl₃). IR (KBr): 3468, 1750, 1696, 1620. ¹H-NMR (400 MHz, CDCl₃): 5.63 (d, J = 1.1 H–C(2')); 5.01 (s, HO–C(8)); 4.98 (br. d, J = 2.2, H–C(3)); 3.37 (s, HO–C(10)); 2.61(d, J = 14.4, H_a–C(6)); 2.41 (d, J = 14.4, H_β–C(6)); 2.22 (d, J = 11.1, H_a–C(9)), 2.18 (d, J = 11.1, H_β–C(9)); 2.15 (s, Me(4')); 1.90 (d, J = 1.1, Me(5')); 1.80 (s, Me(13)); 1.65–1.69 (m, CH₂(2)); 1.46–1.49 (m, CH₂(4)); 1.35–1.38 (m, CH₂(1)); 1.20 (d, J = 7.0, Me(15)); 0.91 (s, Me(14)). ¹³C-NMR (100 MHz, CDCl₃): 173.1 (C(12)); 165.9 (C(1')); 158.2 (C(7)); 157.6 (C(3')); 122.8 (C(11)); 115.9 (C(2')); 102.5 (C(8)); 74.1 (C(10)); 71.9 (C(3)); 46.0 (C(5)); 42.5 (C(9)); 36.4 (C(4)); 31.1 (C(6)); 30.3 (C(1)); 27.5 (C(2)); 27.4 (C(5')); 20.8 (C(4')); 17.9 (C(14)); 12.2 (C(15)); 8.3 (C(13)). EI-MS: 364 (3, M⁺), 346 (32), 328 (29), 264 (39), 246 (70), 95 (90), 83 (100). HR-EI-MS: 364.1882 (calc. 364.1886).

Hertidin B (=(4aR,5R,6S,8aS,9aR)-2,4,4a,5,6,7,8,8a,9,9a-Decahydro-8a,9a-dihydroxy-3,4a,5-trimethyl-2-oxonaphtho[2,3-b]furan-6-yl (2E)-2-Methylbut-2-enoate; **2**). White solid. M.p. 155–158°. [α]_D²⁶ = -115 (c = 0.015, CHCl₃). IR (KBr): 3468, 1750, 1696, 1620. ¹H-NMR (400 MHz, CDCl₃): 6.04 (q, J = 7.0, 1.2, H–C(3')); 5.02 (s, HO–C(8)); 4.91 (br. d, J = 2.1, H–C(3)); 3.36 (s, HO–C(10)); 2.62 (d, J = 14.0, H_a–C(6)); 2.42 (d, J = 14.0, H_β–C(6)); 2.21 (d, J = 11.0, H_a–C(9)), 2.19 (d, J = 11.0, H_β–C(9)); 1.90 (d, J = 7.0, Me(4')); 1.88 (d, J = 1.2, Me(5')); 1.82 (s, Me(13)); 1.66–1.70 (m, CH₂(2)); 1.46–1.49 (m, CH₂(4)); 1.35–1.37 (m, CH₂(1)); 1.21 (d, J = 7.2, Me(15)); 0.93 (s, Me(14)). ¹³C-NMR (100 MHz, CDCl₃): 173.1 (C(12)); 167.2 (C(1')); 158.1 (C(7)); 139.0 (C(3')); 127.5 (C(2')); 122.7 (C(11)); 102.5 (C(2)); 74.3 (C(10)); 71.2 (C(3)); 45.8 (C(5)); 42.5 (C(9)); 36.4 (C(4)); 31.1 (C(6)); 30.4 (C(1)); 27.5 (C(2)); 20.2 (C(4')); 18.0 (C(14)); 12.3 (C(15)); 12.2 (C(5')); 8.4 C(13). EI-MS: 364 (3, M⁺), 346 (30), 328 (28), 264 (29), 246 (73), 95 (85), 83 (100). HR-EI-MS: 364.1884 (calc. 364.1886).

Hertidin C (= (4\$, 4a\$, 5R, 6\$, 8a\$, 9aR)-2, 4, 4a, 5, 6, 78, 8a, 9, 9a-Decahydro-4, 8a, 9a-trihydroxy-3, 4a, 5-trimethyl-2-oxonaphtho[2,3-b]furan-6-yl 3-Methylbut-2-enoate; **3**). White solid. M.p. 146–148°. [a]₁₆²⁶ = -120 (c = 0.015, CHCl₃). IR (KBr): 3468, 1750, 1696, 1620. ¹H-NMR (400 MHz, CDCl₃): 5.62 (d, J = 1.1, H–C(2')); 5.10 (s, HO–C(8)); 4.97 (br. d, J = 2.3, H–C(3)); 4.60 (s, HO–C(6)); 4.70 (s, H–C(6)); 3.30 (s, HO–C(10)); 2.20 (d, J = 11.4, H_a–C(9)), 2.16 (d, J = 11.4, H_β–C(9)); 2.14 (s, Me(4')); 1.90 (d, J = 1.1, Me(5')); 1.80 (s, Me(13)); 1.66–1.70 (m, CH₂(2)); 1.45–1.49 (m, CH₂(4)); 1.35–1.39 (m, CH₂(1)); 1.20 (d, J = 7.0, Me(15)); 0.91 (s, Me(14)). ¹³C-NMR (100 MHz, CDCl₃): 173.2 (C(12)); 165.9 (C(1')); 158.2 (C(7)); 157.6 (C(3')); 122.6 (C(11)); 115.9 (C(2')); 102.7 (C(8)); 74.0 (C(10)); 72.0 (C(6)); 71.2 (C(3)); 46.1 (C(5)); 42.4 (C(9)); 36.3 (C(4)); 30.2 (C(1)); 27.5 (C(2)); 27.4 (C(5')); 20.8 (C(4')); 12.2 (C(14)); 10.5 (C(15)); 8.3 (C(13)). EI-MS: 380 (s, M⁺), 362 (26), 344 (27), 280 (30), 262 (39), 95 (80), 83 (100). HR-EI-MS: 380.1830 (calc. 380.1835).

Hertidin D (= (4\$, 4a\$, 5R, 6\$, 8a\$, 9aR)-2, 4, 4a, 5, 6, 7, 8, 8a, 9, 9a-Decahydro-4, 8a, 9a-trihydroxy-3, 4a, 5-trimethyl-2-oxonaphtho[2,3-b]furan-6-yl (2E)-2-Methylbut-2-enoate; **4**). White solid. M.p. 141–143°. [a]_D²⁶ = -125 (c = 0.015, CHCl₃). IR (KBr): 3468, 1750, 1696, 1620. ¹H-NMR (400 MHz, CDCl₃): 6.04 (q, J = 7.0, 1.2, H–C(3')); 5.10 (s, HO–C(8)); 4.90 (br. d, J = 2.2, H–C(3)); 4.71 (s, H–C(6)); 4.60 (s, HO–C(6)); 3.2 (s, HO–C(10)); 2.22 (d, J = 11.0, H_a–C(9)); 2.18 (d, J = 11.0, H_β–C(9)); 1.96 (d, J = 7.0, Me(4')); 1.87 (d, J = 1.2, Me(5')); 1.83 (s, Me(13)); 1.58–1.61 (m, CH₂(2)); 1.46–1.49 (m, CH₂(4)); 1.33– 1.37 (m, CH₂(1)); 1.23 (d, J = 7.2, Me(15)); 0.91 (s, Me(14)). ¹³C-NMR (100 MHz, CDCl₃): 173.1 (C(12)); 167.2 (C(1')); 158.3 (C(7)); 138.9 (C(3')); 127.5 (C(2')); 122.7 (C(11)); 102.6 (C(8)); 74.2 (C(10)); 72.0 (C(6)); 71.2 (C(3)); 45.8 (C(5)); 42.5 (C(9)); 36.4 (C(4)); 30.2 (C(1)); 27.4 (C(2)); 20.2 (C(4')); 10.6 (C(14)); 12.2 (C(15)); 12.1 (C(5')); 8.3 (C(13). EI-MS: 380 (3, M^+), 362 (29), 344 (28), 280 (29), 262 (40), 95 (90), 83 (100). HR-EI-MS: 380.1831 (calc. 380.1835).

Hertridin E (=(4R,4aS,5R,6S,8aS,9aR)-2,4,4a,5,6,7,8,8a,9,9a-Decahydro-4-hydroxy-8a-({(4R, 4a\$,5R,6\$,8a\$,9aR)-2,4,4a,5,6,78,8a,9,9a-decahydro-8a-hydroxy-3,4a,5-trimethyl-6-[(3-methylbut-2-enoyl)oxy]-2-oxonaphtho[2,3-b]furan-4-yl]oxy)-3,4a,5-trimethyl-2-oxonaphtho[2,3-b]furan-6-yl (2E)-2-Methylbut-2-enoate; 5). White solid. M.p. $92-94^{\circ}$. $[a]_{D}^{26} = -63$ (c = 0.015, CHCl₃). IR (KBr): 3468, 1750, 1696, 1620. ¹H-NMR (400 MHz, CDCl₃): 6.07 (q, J = 7.0, 1.2, H-C(17')); 5.65 (J = 1.2, H-C(17)); 5.32 (ddq, J = 10.6, 4.8, 1.6, H-C(8, 8')); 4.96 (br. d, J = 2.1, H-C(3')); 4.90 (br. d, J = 2.2, H-C(3)); 4.62 (br. d, J $(s, H-C(6)); 4.60 (s, HO-C(6')); 3.38 (s, HO-C(10)); 2.34 (d, J=13.0, 4.8, H_a-C(9.9')); 2.15 (s, HO-C(6)); 3.38 (s, HO-C(10)); 2.34 (d, J=13.0, 4.8, H_a-C(9.9')); 2.15 (s, HO-C(10)); 3.38 (s, HO-C(10));$ H-C(19); 1.86 (d, J = 1.5, Me(13,13')); 1.81 (d, J = 13.0, 10.6, $H_{\beta}-C(9,9')$); 1.66 - 1.69 (m, $CH_2(2,2')$); 1.44-1.48 (*m*, CH₂(4,4')); 1.42 (*d*, J=7.0, Me(15,15')); 1.35-1.39 (*m*, CH₂ (1,1')); 1.97 (*d*, J=7.2, J=7.2Me(19'); 1.90 (J = 1.2, Me(20)); 1.86 (d, J = 1.2, Me(20')); 0.93 (s, Me(14, 14')). ¹³C-NMR (100 MHz, CDCl₃) 174.4 (C(12)); 174.5 (C(12')); 167.6 (C(16)); 165.8 (C(16')); 160.4 (C(7); 160.3 (C(7')); 157.8 (C(18)); 139.0 (C(18')); 127.5 (C(17')); 122.3 (C(11)); 122.2 (C(11')); 115.8 (C(17)); 77.1 (C(10')); 75.9 (C(8, 8')); 75.1 (C(6)); 74.1 (C(10)); 72.0 (C(6')); 70.9 (C(3)); 71.7 (C(3')); 46.0 (C(5)); 46.2 (C(5')); 41.2 (C(9)); 41.1 (C(9')); 36.5 (C(4)); 36.5(C(4')); 31.3 (C(1)); 31.2 (C(1')); 27.8 (C(2)); 27.4 (C(2')); 27.2 (C(20)); 20.8 (C(19)); 20.0 (C(19')); 12.5 (C(15)); 12.0 (C(15')); 12.3 (C(14)); 12.2 (C(14')); 12.0 (C(20')); 8.7 (C(13)); 8.5 (13')). EI-MS: 710 (5, M⁺), 364 (29), 346 (35), 264 (32), 246 (30), 95 (90), 83 (100). HR-EI-MS: 710.3165 (calc. 710.3169).

REFERENCES

- [1] J. Jakupovic, F. Bohlmann, M. Grenz, *Phytochemistry* 1989, 28, 3231.
- [2] S. Ammar, H. Edziri, M. A. Mahjoub, R. Chatter, A. Bouraoui, Z. Mighri, *Phytomedicine* 2009, 16, 1156.
- [3] J. D. Hooker, 'Flora of British India', L. Reeve & Co, Delhi, Vol. 3, 1882, p. 356.
- [4] S. I. Ali, Y. J. Nasir, 'Flora of Pakistan', Fakhri printing press, Karachi, 1972, p. 750.
- [5] S. M. Wazir, S. Saima, A. A. Dasti, M. Subhan, Pak. J. Plant Sci 2007, 13, 29.
- [6] S. Yasmeen, N. Riaz, A. Bibi, N. Afza, A. Malik, R. B. Tareen, Helv. Chim. Acta 2009, 92, 404.
- [7] S. Zhang, G. Zhao, R. Li, G. Lin, *Phytochemistry* 1998, 48, 519.
- [8] G. Massiot, J. M. Nuzillard, L. Le Men-Olivier, P. Aclinou, A. Benkouider, A. Khelifa, *Phytochemistry* 1990, 29, 2207.
- [9] Y. Yaoita, M. Kikuchi, Chem. Pharm. Bull. 1994, 42, 1944.
- [10] J.-Q. Xu, Y.-S. Li, Y.-M. Li, S.-H. Jiang, C.-H. Tan, D.-Y. Zhu, Planta Med. 2006, 72, 567.

Received April 23, 2010